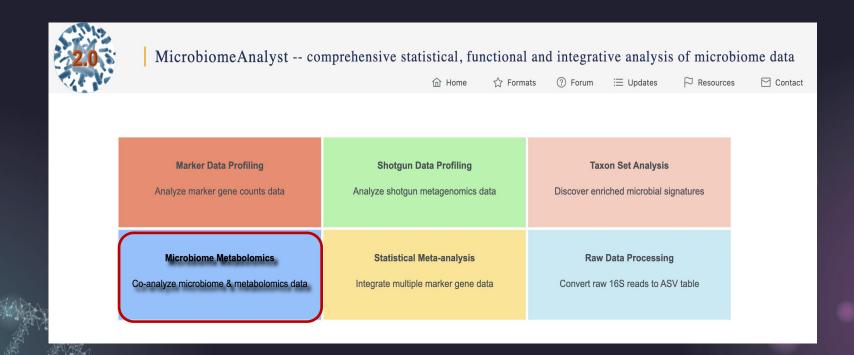
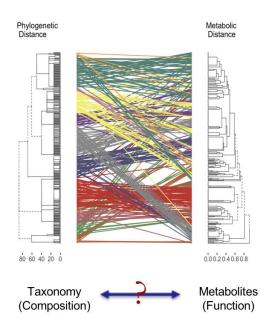
MicrobiomeAnalyst 2.0

Comprehensive statistical, functional and integrative analysis of microbiome data

Tutorial for Microbiome Metabolomics



Motavition



- Metabolomics is critical to connecting microbial community composition and phenotypes at the level of altered metabolic processes in recent microbiome studies
- General statistical correlation analysis often leads to many false positives, making biological interpretation difficult.
- Integrating high dimensional microbiome and their corresponding metabolomics data remains a significant challenge.

Overview

Goal: to support intergrative analysis for microbiome and metabolomics data in both statistically and biologically meaningful perspective

Approches (refer to method selection page for more details):

- **Dimensionality reduction**: Procrustes analysis (PA) and data integration analysis for biomarker discovery using latent components (DIABLO) are implemented to reveal the overall pattern of the paired microbiome and metabolomics datasets.
- **Metabolic network and pathway analysis:** Support pathway enrichment analysis for KO, metabolites and peaks against customized metabolic space based on the taxonomy input and visualization in an interactive network.
- **Microbiome-metabolome correlation analysis:** Provide statistical correlation, model-based correlation analysis as well as integrated corelation analysis

Data type:

- Microbiome data: ASV/OTU/KO count table, taxonomy list
- Metabolomics data: Targeted (metabolite) / Untargeted (Peak) as intensity table or list

I. Start from paired abundance tables:

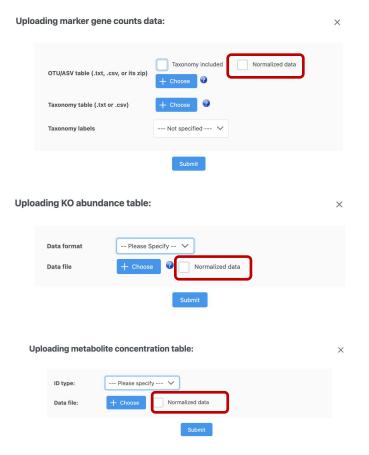
Data Upload Please upload your paired microbiome and metabolomics data table separately 1. Choose the abundance table tab Abundance table **Feature List** Try our example 2. Click upload the metadata file in .txt or .csv format. Metadata file: A text file containing group information Upload 3. Choose OTU/ASV or KO count table Microbiome data: OTU/ASV counts data (.txt,.csv) to upload. Upload KO abundance data 4. Choose metabolite or peak intensity Metabolomics data: Targeted metabolomics data Upload table to upload. Untargeted metabolomics data Previous 5. Proceed to integrity check

- Metadata file should be consistent between the two data types.
- Taxonomy annotation is required for the marker gene data which can be provided as a table
 or as IDs in OTU/ASV table.
- For metabolites, users need to select the ID type. Names, KEGG IDs and HMDB IDs are accepeted. For peaks, general formats (mz, mz__rt and mz@rt) are accepted.

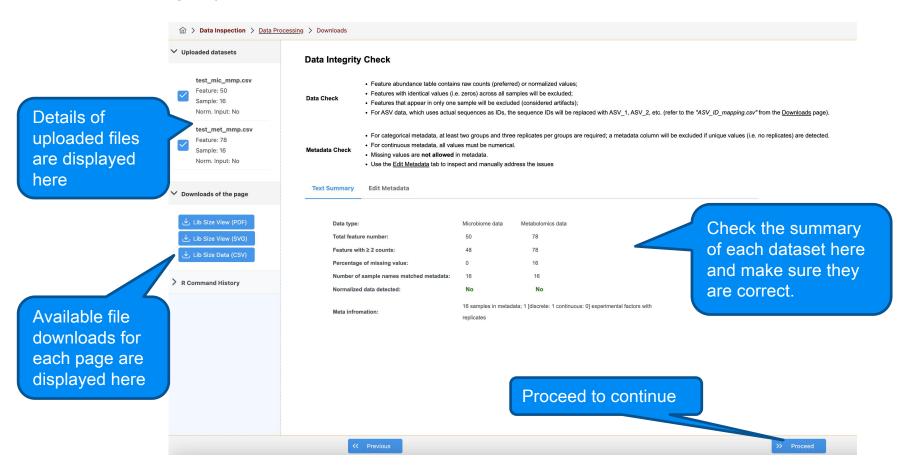
Notes for normalized data upload:

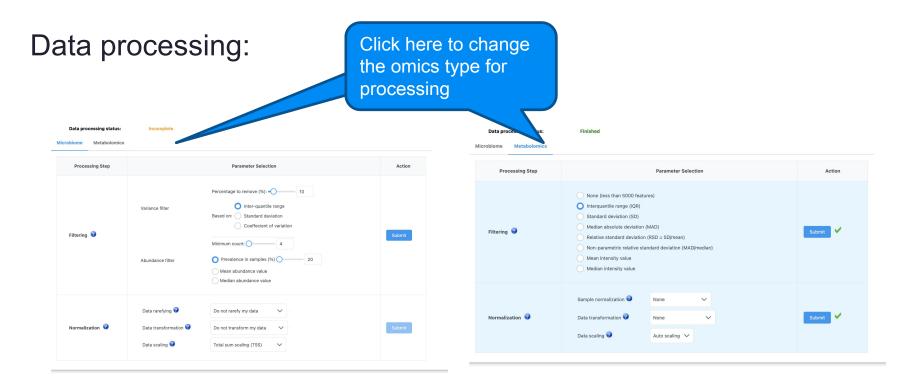
It is highly advised to upload your microbiome abundance table containing raw counts to benefit the best practices for data analysis. However, if your data has already been normalized:

- Indicate it is Normalized data using the check box (shown in the red box to the different data types)
- Bypass data filtering and normalization (Optional)
- The function for predicting metabolites from different taxonomy will become inappropriate during data analysis.



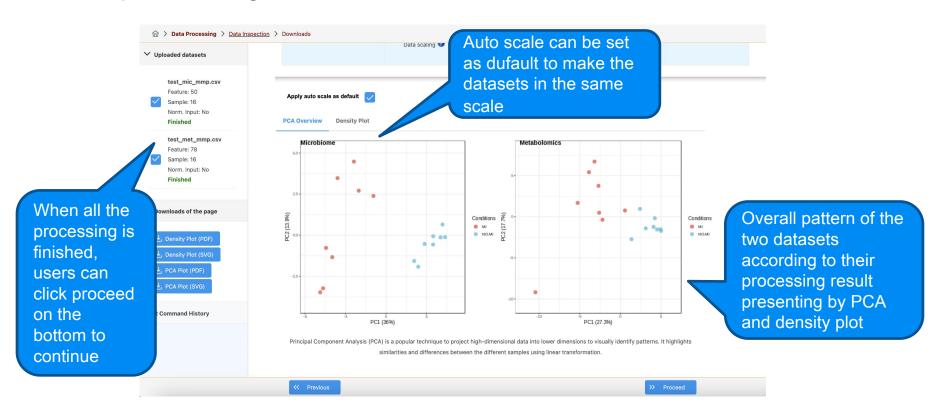
Data integrity check:





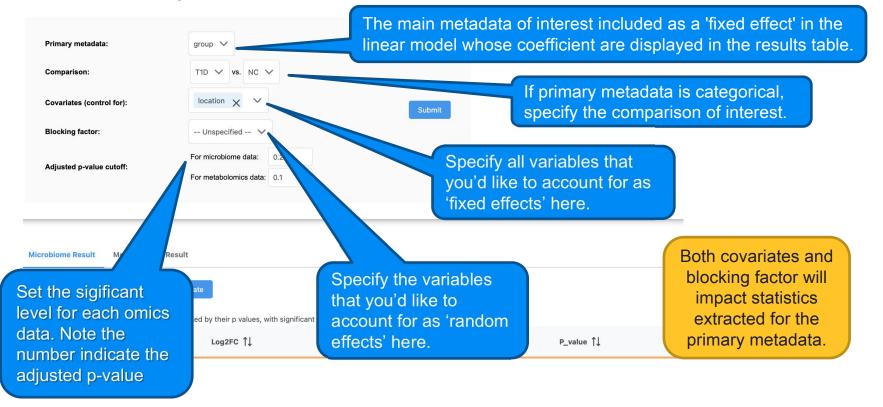
- Different approaches are applied to different omics type
- Background color and ticks suggest the completeness of each processing step , as exemplified by the figure on the right.

Data processing:



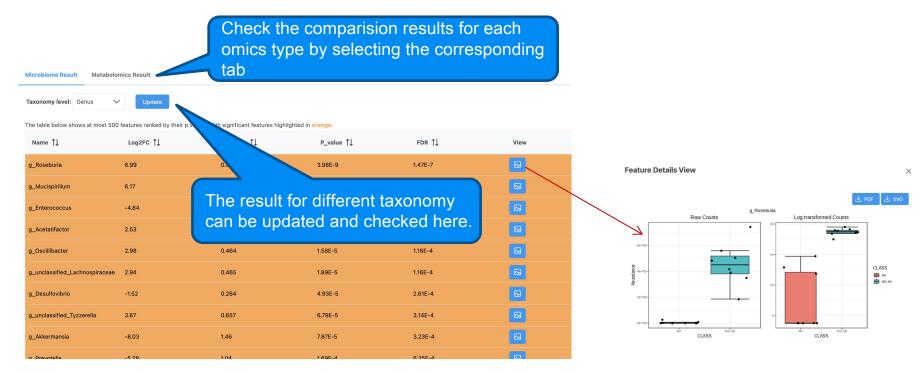
Comparision analysis:

- Aim to identify significant features from individual omics.
- MaAsLin2 is used for microbiome and Limma is used for metabolomics data. Both methods are based on general linear models.

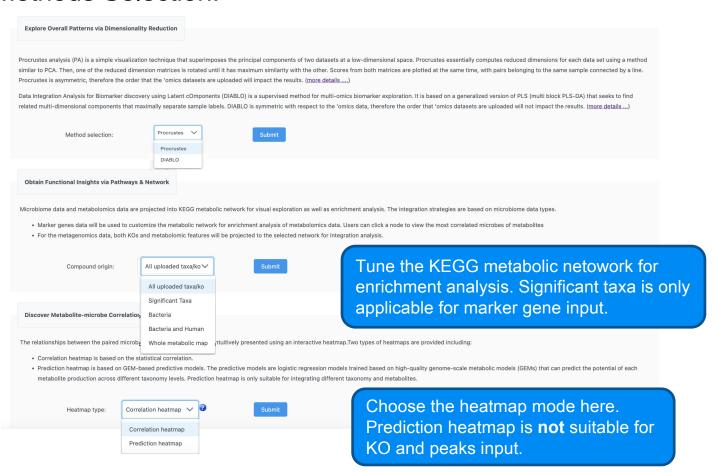


Comparision analysis:

Comparision results are displayed as tables including fold change, raw p-value and adjusted p-value. Feature details can be viewed as box plot by clicking the picture icon.

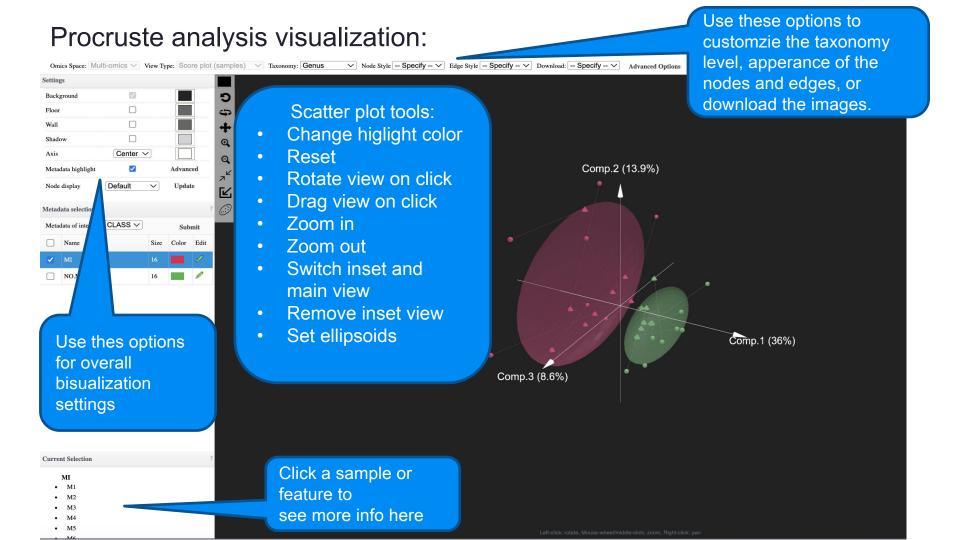


Methods Selection:

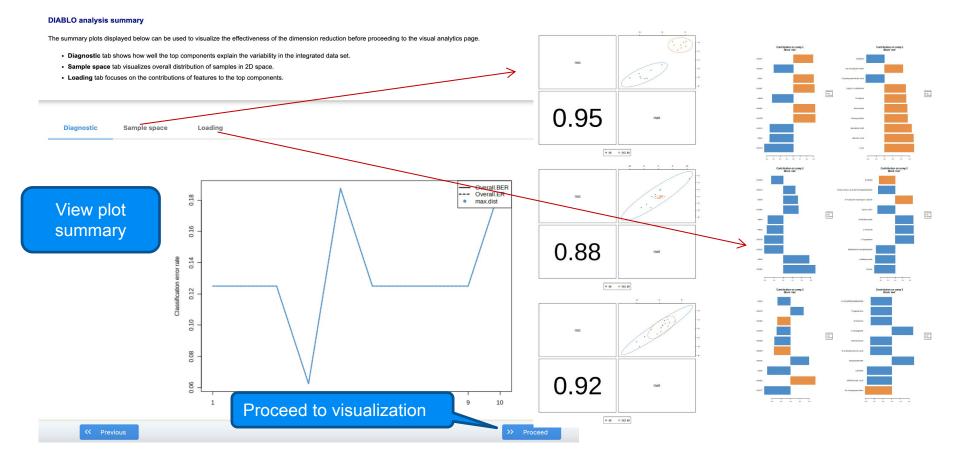


Procruste analysis summary:

Procrustes analysis summary The resulting plot of procrustes analysis along with key statistics is shown below. Summary statistics of Procrustes analysis are displayed below. Procrustes sum of squares repres The shorter the distance, the better **Check statistical Procrustes Sum of Squares:** 0.4793 summary here Correlation in a symmetric Procrustes rotation: 0.7216 Significance: Diagnostic Sample space M1 M8 Conditions View plot summary Component 1 (0.3147) Plot of procrustes residual differences which is based on the sum of squared deviations. The higher the residual difference, the more different is the paired sample between both omics. The three horizontal lines correspond to 75, median and 25 percentile of all residuals. Please refer to vegan for more details. Proceed to visualization



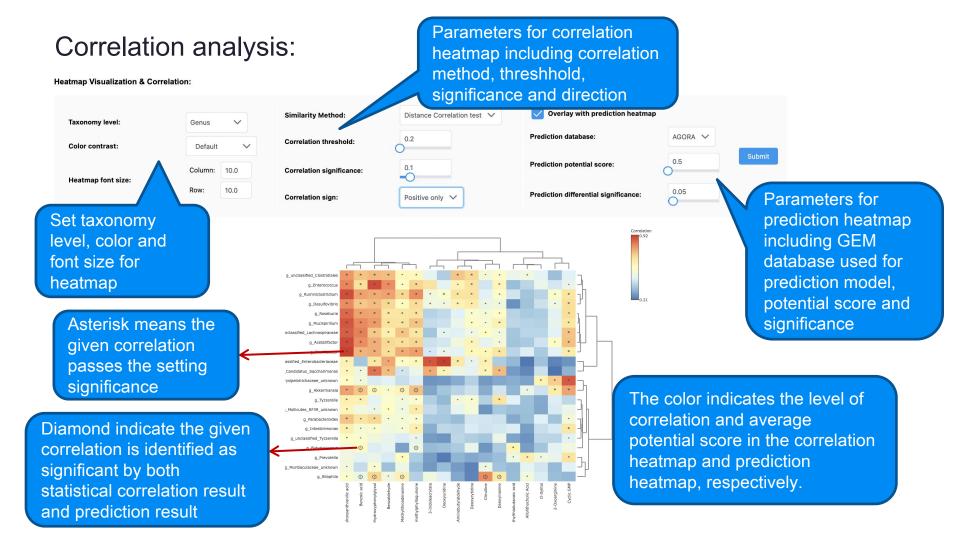
DIABLO analysis summary:



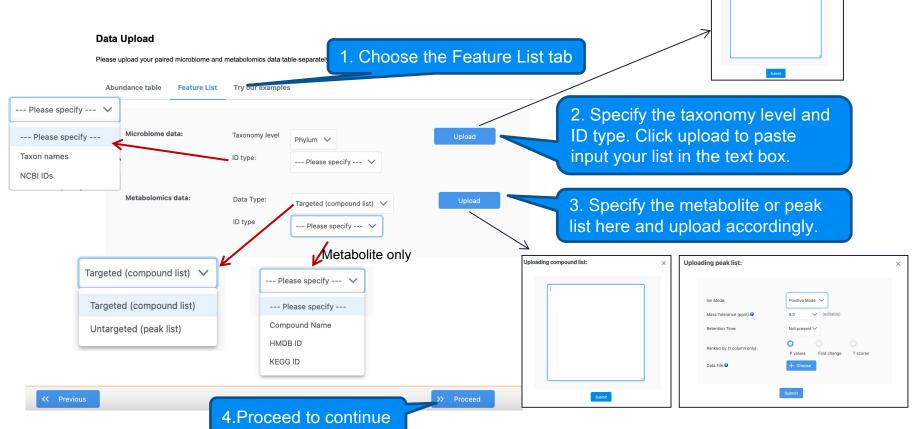
DIABLO analysis visualization:



Pathway & network analysis: Customzie the appearance of the network here Style: KEGG style V Background: Black V Pathway name: Hide V Gene name: Show V Compound name: Show V Download: --Please Select-- V Highlight: Metabolomics Enrichment Analysis - Save Submit Name Hits P-value P-adjust Color Pathway enrichment Arginine biosynthesis 3/19 0.000005(0.0001580 Purine metabolism result. Select the Click the node to see Tryptophan metabolism 4/32 0.0000217 0.0003047 pathway of interest Aminobenzoate degradatic 2/19 0.0000884 0.0007428 the most correlated Toluene degradation to higlight in the taxa for the selected Nitrogen metabolism 2/15 0.0001102 0.0007714 network Benzoate degradation 0.0001414 0.0008487 metabolite Atrazine degradation 0.0001725 0.0009059 Alanine, aspartate and glut 1/23 0.0004848 0.0015664 Carbapenem biosynthesis 1/3 0.0004848 0.0015664 Glyoxylate and dicarboxyl 1/44 0.0004848 0.0015664 Butanoate metabolism 0.0004848 0.0015664 Taurine and hypotaurine n 1/17 0.0004848 0.0015664 Histidine metabolism 3/22 0.0006528 0.0019584 Porphyrin metabolism 0.0011490 0.0032173 D-Amino acid metabolism 3/43 0.0013611 0.0035729 Arginine and proline metal 2/46 0.0015468 0.0038216 Glutathione metabolism 2/22 0.0018631 0.0043472 Terpenoid backbone biosy 1/23 0.0021811 0.0048215 Pyrimidine metabolism 4/54 0.0046312 0.0097256 Cysteine and methionine n 3/54 0.0099852 0.0199704 Phenylalanine, tyrosine an 6/27 0.0116875 0.0223125 Cyanoamino acid metabol 1/23 0.013293(0.0242743 Tyrosine metabolism 2/39 0.019506(0.0341365 Lysine biosynthesis 1/22 0.0350565 0.0588949 **Detail information** KO / Metabolite Hits Tryptophan metabolism of the selected L-Tryptophan o Indole o 3-Hydroxyanthranilic acid patwhay Indolepyruvate Note: IDs in red are not presented in the network



II.Start from paired lists:



Uploading taxon list:

Name Mapping:

Input feature Mapping

All the input microbiome and metabolomics features need to potential prediction. Two databases, Agora and EMBL GF taxon or compound from further analysis, use the De

Check the name mapping results for each omics type by selecting the corresponding tab.

s. GEMs are genome-scale metabolic models which can be used for metabolic ound. The tables below show the matched taxon and compounds. To remove a

Taxon Name Mapping

Compound Name Mapping

Query	KEGG Hits	Agora Hits	EMBL Hits	NCBI Taxonomy	
Haemophilus_D	Haemophilus_D	Haemophilus_D	Haemophilus_D	724	Dele
Bacteroides	Bacteroides	Bacteroides	Bacteroides	816	Dele
Gemella	Gemella	Gemella	Gemella	1378	Dele
Faecalibacterium	Faecalibacterium	Faecalibacterium	Faecalibacterium	216851	Del
Barnesiella	Barnesiella	Barnesiella	Barnesiella	397864	Dele
Pseudoruminococcus					Dele
Slackia_A	Slackia_A	Slackia_A	Slackia_A	84108	Dele
Granulicatella	Granulicatella	Granulicatella	Granulicatella	117563	Dele
Fusobacterium_C	Fusobacterium_C	Fusobacterium_C	Fusobacterium_C	848	Dele
Streptococcus	Streptococcus	Streptococcus	Streptococcus	1301	Dele
Acidaminococcus	Acidaminococcus	Acidaminococcus	Acidaminococcus	904	Dele

For microbial taxonomy, KEGG, GEM (Agora and EMBL) and NCBI ID are provided.

For metabolites, KEGG and GEMs ID are provided.

Unwanted features can be deleted here.

Methods Selection:

Please choose an integration method to proceed Explore Overall Patterns via Dimensionality Reduction Procrustes analysis (PA) is a simple visualization technique that superimposes the principal components of two datasets at a low-dimensional space. Procrustes essentially computes reduced dimensions for each data set using a method similar to PCA. Then, one of the reduced dimension matrices is rotated until it has maximum similarity with the other. Scores from both matrices are plotted at the same time, with pairs belonging to the same sample connected by a line. Procrustes is asymmetric, therefore the order that the 'omics datasets are uploaded will impact the results, (more details) Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) is a supervised method for multi-omics biomarker exploration. It is based on a generalized version of PLS (multi block PLS-DA) that seeks to find related multi-dimensional components that maximally separate sample labels, DIABLO is symmetric with respect to the 'omics data, therefore the order that 'omics datasets are uploaded will not impact the results. (more details ... Not appliable for list input Method selections Procrustes Obtain Functional Insights via Pathways & Network Microbiome data and metabolomics data are projected into KEGG metabolic network for visual exploration as well as enrichment analysis. The integration strategies are based on microbiome data types. . Marker genes data will be used to customize the metabolic network for enrichment analysis of metabolomics data. Users can click a node to view the most correlated microbes of metabolites . For the metagenomics data, both KOs and metabolomic features will be projected to the selected network for integration analysis. Compound origin: All uploaded taxa/ko∨ Discover Metabolite-microbe Correlations via Statistics & GEMs

The relationships between the paired microbiome and metabolomics are intuitively presented using an interactive heatmap. Two

Correlation heatmap is based on the statistical correlation.

Prediction heatmap is based on GEM-based predictive models. The predictive models are logistic regression models to of each metabolite production across different taxonomy levels. Prediction heatmap is only suitable for integration pro

Prediction heatmap V

Heatmap type:

Only prediction heatmap is appliable for list input. It shows the potential of each taxon to produce each metabolite Metabolic network and Heatmap visualization is same as the table input

The End

For more information, visit Tutorials, Resources and Contact pages on www.microbiomeanalyst.ca Also visit our forum for FAQs on www.omicsforum.ca