

Goal for this tutorial

- To perform a comprehensive analysis on a OTU table from 16S rRNA sequencing data, including:
 - * Diversity and compositional analysis
 - Comparative analysis
 - Predictions of metabolic potentials

Data Formatting

- User can upload their 16S data in multiple formats :
 - * Tab-delimited text file (abundance, taxonomy and metadata file)
 - ✤ BIOM format (containing at least abundance and taxonomy information)
 - * mothur output files.

Details about each format are in the next few slides.

Data Formatting

1. Tab-delimited text file

For Example:

- Manipulate data headings in a spreadsheet program like MS Excel
- Save as a tab delimited (.txt) or comma-separated (.csv) file
- The headings **#NAME** (all capital letters) must be used
 - #NAME is for sample names (first column in abundance; first row in metadata file)
 - ✤ 2nd Column of metadata file is for the clinical metadata.
 - Taxonomy information can be present within abundance table or uploaded separately.

#NAME	Sample1	Sample2	Sample3	Sample4	Sample5	Sample6	Sample7	Sample8				
#CLASS	Υ	Ν	Ν	γ	Ν	Υ	Υ	Ν				
Archaea;	219	49	42	50	6	17	22	21				
Archaea;Crenard	chaeota;T	hermopro	tei;	4	24	0	191	0	0	0	0	0
Bacteria;Acido	bacteria;		32	4	4	22	76	16	1	0		
Bacteria;Actino	obacteria	;	47	0	0	4	0	0	0	0		

#NAME	SampleType	Primer
Sample1	skin	ILBC_02
Sample2	gut	ILBC_06
Sample3	skin	ILBC_01
Sample4	gut	ILBC_07
Sample5	gut	ILBC_05
Sample6	gut	ILBC_09
Sample7	skin	ILBC_08
Sample8	skin	ILBC_03

Taxonomic profiles with valid taxonomy identifier labelled names

Metadata file

Data Formatting

2. BIOM format

- General-use format (standard) for representing biological sample by observation contingency tables.
 - For details, please check BIOM format page (<u>http://biom-format.org</u>/)
- **QIIME** and **mothur** can also generate output in this format.
 - Must contain at least abundance and taxonomy information. (metadata file can be uploaded separately.)

3. Mothur output file

- Two files needed: a **consensus taxonomy** (taxonomy) file and a **.shared** (abundance) file.
- Metadata file can be uploaded separately.
 - For details, please visit the mothur home page (<u>https://mothur.org/wiki/Main_Page</u>).

1. Data Upload

Example data sets for testing

	Upload your data or try our example data below:
Step 1: Upload your taxonomic profile data (supporting three	Plain text table format
formats)	OTU table (.txt or .csv) Choose File No file chosen 🤡 Taxonomy labels included
Step 2: Upload your	Metadata file (.txt or .csv) Choose File No file chosen
metadata file	Taxonomy table (.txt or .csv) Choose File No file chosen
Step 3: Upload your	Taxonomy labels Not specified
separately (if not	Submit
and also specify the	BIOM format
annotated taxonomic labels	MOTHUR outputs Step 4 : Click "Submit" to proceed
	Example data sets for testing

You can try our example also

Data Type	Format	Annotation	Description
Aging Mouse Gut	BIOM	Greengenes	16S read counts (.biom file) of 21 samples from the fecal microbiome of mice (<u>Langille, et al.</u>). Group label: Young, Mid and Old - indicating the age group.
Mammalian Gut	Plain text	SILVA	16S read counts (.txt file) of 38 samples from different mammalian (excluding human) species (<u>Muegge, et al.</u>) analyzed using QIIME. Group label: Herbivores, Carnivores and Omnivores - indicating the diet group.
Human Stool	Mothur	RDP	24 pyrosequenced samples derived from human stool and analyzed in mothur (<u>Costello et al.</u>). Group Label: Male (M), Female (F).
			Submit

2. a) Data Integrity Check

Text Summary	Graphic Summary	
Data type:		OTU abundance table
File format:	:	biom
OTU annota	ation:	greengene_id
OTU numbe	er:	3238
OTU with ≥	2 counts:	3238
Sample nur	mber:	21
Number of	experimental factors:	1
Total read of	counts:	272911
Average co	unts per sample:	12995
Maximum o	ounts per sample:	13398
Minimum c	ounts per sample:	12419

• Provides processing and summary information for user uploaded data.

2. b) Graphic Summary

 Provides user the information about library size or total number of reads present in of each sample and help in identifying the potential outliers due to undersampling or sequencing errors.

3. a) Data Filtering (Features)

Feature Filter	Sample Editor	
L	ow count filter 😵	Minimum count: 2 Prevalence in samples (%) 20 Mean abundance value Median abundance value
L	ow variance filter 😵	Percentage to remove (%): 10 Inter-quantile range Based on: Standard deviation Coeffecient of variation
		Submit

Identifying and removing variables or features that are unlikely to be of use when modeling the data.

- Features that are of low quality or low confidence
 - All zeros, singleton or detected in only sample
- Features that are of low abundance
 - May be less functionally important
- Features that are of low variance
 - Less informative for comparative analysis
- 6 different approaches: on the basis of **count (abundance)** or using statistical approaches such as **mean, median, IQR, standard deviation or C.V.**

3. b) Sample Filtering (Editor)

	Feature Filter	Sample Editor			
	Note you must cl the data filtering	ick the Submit button normalization and a	on below to com nalysis again.	iplete sa	mple removal. After data updates, you need to re-perform
		Available			Exclude
	9Y-June1				
	10Y-June1				
User can select samples	8Y-May23				
to remove from	10Y-May23				
downstream analysis	6Y-June1			→	
	9Y-May23			→I	
	Y7-Aug14			+	
	Y7-Aug15			к	
	6Y-May23			-	
	M11-Aug14				
	M11-Aug15				
	M11-Jul13				
	11M-May23				
	M13-Jul13		•		
				Sub	mit

• Users can remove samples that are detected as outlier via graphical summary result or downstream analysis. (e.g. Beta-diversity analysis)

4. Data Normalization

Data rarefying 🕐	 Do not rarefy my data Rarefy without replacement to the minimum library size Rarefy with replacement to the minimum library size
Data scaling 😮	 Do not scale my data Total sum scaling (TSS) Cumulative sum scaling (CSS) Upper-quantile normalization (UQ)
Data transformation 💞	 Do not transform my data Relative log expression (RLE) Trimmed mean of M-values (TMM) Centered log ratio (CLR)
	Submit

- Normalizing is required to account for uneven sequencing depth, undersampling and sparsity present in such data. (useful before any meaningful comparison)
- Several normalization methods which have been commonly used in the field are present. (3 categories: **rarefaction**, **data scaling and data transformation**)

5. Data Analysis

A. Visual Exploration

1. Stacked Bar/Area plot

- Provides exact composition of each community through direct quantitative comparison of abundances.
- It can be created for all samples, sample-group wise or individual sample-wise at multiple taxonomic level present in data.(i.e. phylum to OTU)

A. Visual Exploration

2. Pie Chart

- Helps in visualizing the taxonomic compositions of microbial community.
- It can also be created for all samples, sample-group wise or individual sample-wise at multiple taxonomic level present in data.(i.e. phylum to OTU)

- 1. Alpha-diversity analysis & significance testing: assessing diversity within community or sample.
- Supporting 6 widely used metrics to calculate the alpha diversity supported such as Chao1 (evenness), Observed (richness), Shannon (account for both evenness and richness).
- Statistical significance testing between groups using parametric and non-parametric tests.

- 2. Beta diversity analysis & significance testing: assessing the differences between microbial communities.(between samples)
- Dissimilarity matrix can be calculate via multiple distance method and can be visualized using PCoA (Principal Coordinate Analysis) or NMDS (Nonmetric Multidimensional Scaling)
- 5 widely used methods: compositional-based distance metrics such as Bray-Curtis or phylogenetic-based (Unweighted Unifrac) supported.

2. Beta diversity analysis & significance testing

• Results of PCoA/NMDS analysis can be visualized in **3D** using **ordination-based** distances supported.

2. Beta diversity analysis & significance testing

- 3 statistical methods supported to tests the strength and statistical significance of sample groupings based on ordination based distances.
- ANOSIM/adonis, PERMANOVA and PERMDISP supported.
- Helps in understanding the underlying reasons for pattern present in PCoA or NMDS plot.

3. Core microbiome analysis

- Helps in identifying core taxa or features that remain unchanged in their composition across different sample groups based on sample prevalence and relative abundance.
- Can be performed at various taxonomical level. (Phylum to OTU)

1. Heatmap and clustering analysis

- Visualize the relative patterns of high-abundance features against a background of features that are mostly low-abundance or absent.
- Various distance and clustering methods supported.(both sample and feature-wise)
- Features can be merged at multiple taxonomic levels also.(can also be visualized at individual OTU-level)

2. Correlation analysis

- Helps in identifying biologically or biochemically meaningful relationship or associations between taxa or features.
- Can be analyzed at various level (Phylum to OTU) by merging data based on taxonomic rank.

3. Dendrogram and clustering analysis

• Performs phylogenetic analysis on samples using either various phylogenetic or nonphylogenetic distance measures. (support for 5 most widely used)

Bacteroidetes						
Proteobacteria						
Tenericutes						
TM7						
Verrucomicrobia						
Cyanobacteria						
Deferribacteres						
Firmicutes						
	L					
	-1.0	-0.5	0.0	0.5	1.0	
	Correlation coefficients					

tesult Table							
Name ≎	correlation \$	t-stat ≎	p-value ≎	FDR \$	View		
Firmicutes	1.0	0.0	0.0	0.0	🖬 Details		
Bacteroidetes	-0.9916	-33.417	2.4167E-18	9.6666E-18	🖬 Details		
Deferribacteres	0.56531	2.9873	0.0075719	0.020192	🗈 Details		
Proteobacteria	-0.27973	-1.27	0.21942	0.41031	Details		
Tenericutes	-0.25925	-1.1701	0.25644	0.41031	🗈 Details		
Cyanobacteria	0.18181	0.80591	0.43027	0.57369	🗈 Details		
Verrucomicrobia	0.075474	0.32992	0.74507	0.80747	🖬 Details		
TM7	0.0566	0.24711	0.80747	0.80747	🖬 Details		

4. Pattern Search

- Helps in identifying or search for a pattern based on correlation analysis on defined pattern.
- Pattern can be defined based on either feature (gene) of interest or based on predefined or custom profile of experimental factors.

D. Differential abundance analysis

1. Univariate Statistical Comparisons

- t-test/ANOVA (parametric) or Mann-Whitney/KW test (non-parametric) can be done.
- Depending upon no. of sample groups, statistical test is chosen from parametric or non parametric test options.
- P-values adjusted using **FDR** method.

D. Differential Abundance analysis

Features can be merged	agenomeSeq: statistical analysi	s for sparse high-throughput sequencing	g data 🕜	Chose from different Experimental factors	
level	Taxonomic level Phylum	•			
	Experimental factor Age	Submit		Click on "Details" to see	
models based on number	Statistical model zero-inflate	d Gaussian fit		group-wise data distribution for each	
of groups	Adjusted p-value cutoff 0.05			individual feature	
				1 –	
Name ≎	Pvalues ≎	FDR ≎	View		
Tenericutes	3.5853E-4	0.0028683	Details		
Proteobacteria	0.010273	0.037245	Details	·	
Verrucomicrobia	0.013967	0.037245	Details	5x+00 -	
Deferribacteres	0.050285	0.10057	Details	2 and 2 -	
Cyanobacteria	0.075187	0.1203	Details	egeneration dass egeneration	
TM7	0.16447	0.2193	Details	2+425	
Bacteroidetes	0.28385	0.3244	Details	6+43	
Firmicutes	0.72836	0.72836	Details	ng vic Class	
	14	< 1 (b) (b)			

2. metagenomeSeq

- Detect differential abundant features in microbiome experiments with an explicit design.
- Accounts for **under-sampling** and **sparsity** in such data.
- Performs zero-inflated Gaussian fit (fitZIG) or fit-Feature (fitFeature) on data after normalizing the data through cumulative sum scaling (CSS) method (novel approach)
- fitFeature model is recommended over fitZIG for two groups comparison.
- Very sensitive and specific in nature (fails with very low sample size)

D. Differential Abundance analysis

- Developed for RNAseq data analysis.
- Powerful statistical method (outperforms others methods with appropriate data filtration and normalization techniques)
- By default, **RLE** (Relative Log Expression) normalization is performed on the data.

D. Differential Abundance analysis

4. DESeq2

- Developed for RNAseq data analysis. •
- Uses negative binomial generalized linear models to estimate dispersion and • logarithmic fold changes.

E. Biomarker Analysis

Featur merged a taxono	es can be at different omic level	Linear Dis	criminant An	alysis (LD	A) Effect Size	(LEfSe) 😵		
Chose fro Experime	om different ental factors	Exper Adjus Log L	imental factor ited p-value cutol DA score	A ff 0.	ge 05 0	Subn	nit	Click here to view Effect size of differential features
Result Table Graphical Sun The table below shows at most 5	mmary 500 features ranked by their p values	s, with significant ones highlighted in	1 orange					Click on "Details" to see group- wise data distribution for each individual feature
Name ≎	Pvalues \$	FDR \$	Mid \$	Old \$	Young ≎	LDAscore \$	View	
Cyanobacteria	1.1821E-4	9.4567E-4	0.0	0.0	29117.4	4.16	Details	
TM7	2.9855E-4	0.0011942	0.0	1839.34	28674.8	4.16	Details	
Proteobacteria	0.001339	0.0035707	707.651	19471.6	28375.5	4.14	Details	
Verrucomicrobia	0.0019605	0.003921	38722.3	499.922	53121.3	4.42	Details	5++03-
Tenericutes	0.0025495	0.0040792	481002.0	78233.2	84400.0	5.3	Details	
Deferribacteres	0.25647	0.34196	47773.8	248583.0	152698.0	5.0	Details	•
Firmicutes	0.68667	0.78477	3071660.0	3964320.0	3876590.0	5.65	Details	etass Big Big Big Big Big Big Big Big Big Big
Bacteroidetes	0.94596	0.94596	6360140.0	5687060.0	5747020.0	5.53	Details	[≈] 22+97.
			14					14914

H00051 H00021 H00021 H00053 H00055 H00055 H00052

1. LEfSe

- Compare the metagenomics (16S or shotgun) abundance profiles between samples in different state.
- Performs a set of statistical tests for detecting differentially abundant features (KW sumrank test: statistical significance) and biomarker discovery.(Linear Discriminant analysis: Effect Size)

E. Biomarker Analysis

2. Random forests

- Ensemble learning method used for classification, regression and other tasks.
- It operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) of the individual trees.
- Random forests correct for decision trees habit of overfitting to their training set.

E. Biomarker Analysis

Most important features for classification of data into provided class groups

2. Random Forest

- It provides estimates of what variables are important in the classification of data.
- It computes proximities between pairs of cases that can be used in clustering, locating outliers, or give interesting views of the data.

F. Functional potential

Prediction for Greengenes Annotated OTUs (PICRUSt)

PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) estimates the properties of ancestral organisms from living relatives by performing gene content inference and metagenome inference. More details about this algorithm can be found from MGI Langille et al. Please make sure you have used closed-reference OTU picking protocol to search sequences against the Greengenes reference OTUs (18May2012 version) to a specified percent identity.

Predict Metabolic Potential

You can perform functional profiling if only your features or OTUs are annotated using greengene or SILVA database)

Predicting the functional capabilities of microbial communities using Tax4Fun

Tax4Fun is designed for functional prediction based on minimum 16SrRNA sequence similarity. It is applicable to output as obtained from the SILVAngs web server or the application of QIIME against the SILVA database. Note, the process is time consuming and may take ~2 min to complete. There will be an error with the box plots if the counts are relative. The result table can be used for functional profiling using our Shotgun Data Profiling module.

Annotation Pipeleine

QIIME against SILVA database

Predict Metabolic Potential

Functional potential prediction: inferring functional (metabolic) profile from taxonomic profile.

- 2 methods available:
 - PICRUSt: It's an evolutionary modeling algorithm. Its predictions based on topology of the tree and phylogenetic distance to next sequenced organism. It is based on Greengenes annotated OTUs.
 - Tax4Fun: Prediction based on minimum 16SrRNA sequence similarity using SILVA annotated OTUs.

F. Functional potential

Prediction for Greengenes Annotated OTUs (PICRUSt)

PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) estimates the properties of ancestral organisms from living relatives by performing gene content inference and metagenome inference. More details about this algorithm can be found from <u>MGI Langille et al.</u> Please make sure you have used closed-reference OTU picking protocol to search sequences against the Greengenes reference OTUs (18May2012 version) to a specified percent identity.

Predict Metabolic Potential

	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6	Sample_7
K00001	250909	233567	216513	470693	270248	246187	221069
K00002	8509	2834	4060	11144	4332	6965	3428
K00003	1114897	1153876	1154249	981943	1128078	1005126	1165678
K00004	530	604	372	4249	946	921	231
K00005	30894	30435	22192	61806	32201	38726	29505
K00007	1371	175	1184	7180	1971	5938	349
K00008	52714	54522	32976	257301	77995	59550	37235
K00009	24321	68586	41373	127192	58857	131226	32610
K00010	51165	52906	41571	63596	53110	64203	55787
K00011	372	37	136	323	102	264	85
K00012	303002	266747	251261	360465	260342	440048	246247
K00013	1013642	1047238	1020036	872323	1043993	997186	1036895
K00014	803730	808773	813423	781430	811373	764087	809040
K00015	8102	6526	4413	52508	12419	9214	2931
K00016	721909	738355	695982	811983	766730	602250	734496
K00018	99781	86186	90984	93518	73678	122128	90908
K00019	16779	13996	16526	66896	23543	32695	10703
K00020	49409	40655	51099	158991	52683	62358	39725
K00021	2717	22	50	99	137	3801	11
K00023	8123	1590	6532	44293	11733	13100	2000

Count distribution od predicted metagenomic abundance data (KO counts) [log-scale]

Result KO table

F. Functional potential

#NAME	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6
#CLASS	truc	truc	truc	truc	truc	truc
Archaea;	0	0	0	0	0	0
Archaea;Crenarchaeota;	0	0	0	0	0	0
Archaea;Crenarchaeota;Thermoprotei;	0	0	0	0	0	0
Archaea;Crenarchaeota;Thermoprotei;Desulfurococcales;	0	0	0	0	0	0
Archaea;Crenarchaeota;Thermoprotei;Sulfolobales;	0	0	0	0	0	0
Archaea; Crenarchaeota; Thermoprotei; Sulfolobales; Sulfolobaceae;	0	0	0	0	0	0
Archaea;Crenarchaeota;Thermoprotei;Thermoproteales;	0	0	0	0	0	0
Archaea;Crenarchaeota;Thermoprotei;Thermoproteales;Thermoproteaceae;	0	0	0	0	0	0
Archaea; Crenarchaeota; Thermoprotei; Thermoproteales; Thermoproteaceae; Caldivirga;	0	0	0	0	0	0
Archaea;Euryarchaeota;	0	0	0	0	0	0
Archaea;Euryarchaeota;Halobacteria;	0	0	0	0	0	0
Archaea; Euryarchaeota; Halobacteria; Halobacteriales;	0	0	0	0	0	0
Archaea;Euryarchaeota;Halobacteria;Halobacteriales;Halobacteriaceae;	0	0	0	0	0	0
Archaea;Euryarchaeota;Methanomicrobia;	0	0	0	0	0	0
Archaea;Euryarchaeota;Methanopyri;	0	0	0	0	0	0
Archaea;Euryarchaeota;Methanopyri;Methanopyrales;	0	0	0	0	0	0
Archaea;Euryarchaeota;Methanopyri;Methanopyrales;Methanopyraceae;	0	0	0	0	0	0
Archaea; Euryarchaeota; Methanopyri; Methanopyrales; Methanopyraceae; Methanopyrus;	0	0	0	0	0	0
Bacteria;	99.92767599	99.99021909	99.95954365	100	99.98081351	99.91038279
Bacteria;Acidobacteria;	0	0	0	0	0	0
Bacteria;Actinobacteria;	0.072324012	0.088028169	0.121369043	0.232045481	0.134305449	0.307258994
Bacteria;Actinobacteria;Actinobacteria;	0.072324012	0.088028169	0.121369043	0.232045481	0.134305449	0.307258994

OTU table

Functional profiling

	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6	Sample_7
K00001	250909	233567	216513	470693	270248	246187	221069
K00002	8509	2834	4060	11144	4332	6965	3428
кооооз	1114897	1153876	1154249	981943	1128078	1005126	1165678
коооо4	530	604	372	4249	946	921	231
коооо5	30894	30435	22192	61806	32201	38726	29505
коооо7	1371	175	1184	7180	1971	5938	349
коооов	52714	54522	32976	257301	77995	59550	37235
коооо9	24321	68586	41373	127192	58857	131226	32610
кооо1о	51165	52906	41571	63596	53110	64203	55787
K00011	372	37	136	323	102	264	85
K00012	303002	266747	251261	360465	260342	440048	246247
K00013	1013642	1047238	1020036	872323	1043993	997186	1036895
K00014	803730	808773	813423	781430	811373	764087	809040
K00015	8102	6526	4413	52508	12419	9214	2931
K00016	721909	738355	695982	811983	766730	602250	734496
K00018	99781	86186	90984	93518	73678	122128	90908
КООО19	16779	13996	16526	66896	23543	32695	10703
K00020	49409	40655	51099	158991	52683	62358	39725
K00021	2717	22	50	99	137	3801	11
K00023	8123	1590	6532	44293	11733	13100	2000

KO table

- After, prediction the result data is similar as **shotgun metagenomic** data.
- User have to go through the **Shotgun Data Profiling** module to perform comprehensive analysis.
- Please check, **Tutorial II** on (**Shotgun data profiling**) for stepwise detailed analysis on such data.

Download Results

- The analysis results (images and tables) can be downloaded from east panel present at every individual analysis page.
- Images can be downloaded in SVG and PDF format.
- Tables are available in CSV format to download.

